This website uses cookies

We use cookies and website tracking tools to provide you with the best online experience. Learn more in our privacy statement.

if you accept, your choice will be valid until cancellation.

If you disallow cookies, functionality of our website might be limited.

 

Section for Computational Sensomotorics

The Section for Computational Sensomotorics investigates theoretical principles in the perception and control of motor actions. Research is organized around three main topics:

1) Clinical movement control and rehabilitation,
2) neural mechanisms of action processing
3) biologically-inspired technical applications and biomedical engineering

Research is highly interdisciplinary, including psychophysical and clinical experimentation, the development of mathematical and computational models, and the development of technical systems that exploit brain-inspired principles or support accurate diagnosis and rehabilitation training in neurological diseases.

For detailed information please see the Section’s website http://www.compsens.uni-tuebingen.de

Research Projects
Members
Publications
Openings

Clinical Movement Control and Rehabilitation

 

Applying advanced computational methods, we analyze the body movements of patients with neurological movement disorders. Goals of this work are to identify and to quantify disorder-specific or lesion-specific changes in movement patterns, including especially complex whole-body movements like gait or interactive tasks. Our work addresses movement deficits associated with various neurological disorders, including cerebellar ataxia, Parkinson's disease and apraxia. Another focus of this work is the investigation of motor adaptation and training effects in normal participants and during motor rehabilitation training for neurological patients.

Overview: http://www.compsens.uni-tuebingen.de/joomla25/index.php/research?view=researcharea&task=show&id=2

 

Neural and Computational Principles of Action Processing

 

We investigate the mechanisms of the perception of complex body movements, and their relationship with motor execution. Our work combines psychophysical experiments and the development of physiologically-inspired neural models in close collaboration with electrophysiologists at the HIH and the CIN. In addition, exploiting advanced methods from computer animation and Virtual Reality (VR), we investigate the role of body movements (facial and body expressions) in social communications and psychiatric disorders, including schizophrenia and autism spectrum disorders.

Overview: http://www.compsens.uni-tuebingen.de/joomla25/index.php/research?view=researcharea&task=show&id=3

 

Biomedical and biologically-motivated technical applications

 

We develop technical applications for the quantification of movements in patients, specifically focusing on pre-clinical diagnosis of movement disorders and the support of rehabilitation training. In addition, exploiting principles derived from the nervous system, we develop technical systems and algorithms for the recognition and synthesis of complex body movements, e.g. for robotics and computer vision. Present research foci in this domain are the design of cheap systems for movement analysis exploiting the Microsoft Kinect system, and methods for the modeling of complex coordinated movement patterns of humans, which can be exploited for movement synthesis in humanoid robots. A further novel focus is to explore the use of humanoid robots for rehabilitation training.

Overview: http://www.compsens.uni-tuebingen.de/joomla25/index.php/research?view=researcharea&task=show&id=4

 

Patents

 

Giese M A, Ilg W, Golla H, Thier HP (2009) System und Verfahren zum Bestimmen einer Bewegungskategorie sowie deren Ausprägungsgrad. Patent 10 2004 060 602.1-35, Deutsches Patentamt, München.

Giese M A (1998) Effiziente Methode zur Implementierung dynamischer neuronaler Felder. Patent 198 44 364.1, Deutsches Patentamt, München.


 
Name
Department
Phone
Email
 Mirjana Angelovska
Mirjana Angelovska Secretary
Section Computational Sensomotorics
07071 29-89137 
Dr. Tjeerd Dijkstra
Dr. Tjeerd Dijkstra PostDoc
Section Computational Sensomotorics
07071 29-89135 
Prof. Dr. Martin Giese
Prof. Dr. Martin Giese Research Group Leader
Section Computational Sensomotorics
07071 29-89124 
 Mohammad Hovaidi Ardestani
Mohammad Hovaidi Ardestani PhD Student
Section Computational Sensomotorics
07071 29-89138 
Dr. Winfried Ilg
Dr. Winfried Ilg PostDoc
Section Computational Sensomotorics
07071 29-89125 
Dr. Jindrich Kodl
Dr. Jindrich Kodl PostDoc
Section Computational Sensomotorics
07071 29-89224 
 Nicolas Ludolph
Nicolas Ludolph PhD Student
Section Computational Sensomotorics
07071 29-89131 
 Albert Mukovskiy
Albert Mukovskiy PostDoc
Section Computational Sensomotorics
07071 29-89132 
Dipl. Inf. Björn Müller
Dipl. Inf. Björn Müller IT Systemadministrator / Software Development
IT
07071 29-81999 
 Alessandro Salatiello
Alessandro Salatiello PhD Student
Section Computational Sensomotorics
07071 29-89130 
 Michael Stettler
Michael Stettler PhD Student
Section Computational Sensomotorics
07071 29-89223 
 Nick Taubert
Nick Taubert PhD Student
Section Computational Sensomotorics
07071 29-89135 

Selection 

 

Caggiano V, Giese MA, Thier P, Casile A (2015) Encoding of point of view during action observation in the Local Field Potentials of macaque area F5. European Journal of Neuroscience 41(4):466-476

Ilg W, Bastian A, Boesch S, Burciu R, Celnik P, Claassen J et al. (2014) Consensus Paper: Management of Degenerative Cerebellar Disorders. Cerebellum 13(2):248-268

Giese MA (2014) Mirror representations innate versus determined by experience: A viewpoint from learning theory. Behavioural and Brain Sciences 37(2):201-202

Christensen A, Giese MA, Sultan F, Mueller OM, Goericke SL, Ilg W et al. (2014) An intact action-perception coupling depends on the integrity of the cerebellum. Journal of Neuroscience 34(19):6707-6716

Fleischer F, Caggiano V, Thier P, Giese MA (2013) Physiologically inspired model for the visual recognition of transitive hand actions. Journal of Neuroscience 15(33):6563-6580

Caggiano V, Pomper JK, Fleischer F, Fogassi L, Giese MA, Thier P (2013) Mirror neurons in monkey area F5 do not adapt to the observation of repeated actions. Nature Communications 4:1433

Chiovetto E, Giese MA (2013) Kinematics of the coordination of pointing during locomotion. Plos One 8(11)

Synofzik M, Schatton C, Giese MA, Wolf J, Schöls L, Ilg W (2013) Videogame-based coordinative training can improve advanced, multisystemic early-onset ataxia. Journal of Neurology 260(10):2656-2658

Ilg W, Schatton C, Giese MA, Schöls L, Synofzik M (2012) Video game-based coordinative training improves ataxia in children with degenerative ataxia. Neurology 79(20):2056-2060

Caggiano V, Fogassi L, Rizzolatti G, Casile A, Giese MA, Thier P (2012) Mirror neurons encode the subjective value of an observed action. Proceedings of the National Academy of Science 109(29);11848-11853

Caggiano V, Fogassi L, Rizzolatti G, Pomper J, Thier P, Giese MA*, Casile A* (*equal contributions) (2011) View-based encoding of actions in mirror neurons of area F5 in macaque premotor cortex. Current Biology 21(2):144-148    

Christensen A, Ilg W, Giese MA (2011) Spatiotemporal tuning of the facilitation of biological motion perception by concurrent motor execution. Journal of Neuroscience 31(9):3493-3499

 

Ausgewählte Publikationen von 1992-2013 finden sie unter:
http://www.compsens.uni-tuebingen.de/joomla25/index.php/publications/publications-and-abstracts

For current openings within the Section of Computational Sensomotorics see:

http://www.compsens.uni-tuebingen.de/index.php?option=com_content&view=article&id=57&Itemid=82&lang=de

Bachelor/Master theses: Development of KINECT exergames for motor rehabilitation. We offer degree theses in the area of game development! In your Bachelor or Master thesis you will develop a KINECT game for motor rehablitation yourself or you will be part of the development team.

Research Group Leader
Prof. Martin Giese martin.gieseuni-tuebingen.de Address

Center of Neurology
Hertie Institute for Clinical Brain Research
Department Cognitive Neurology

Otfried-Müller-Straße 25
72076 Tübingen

Phone: +49 (0)7071 29-89124
Fax: +49 (0)7071 29-25011

Assistence

Mirjana Angelovska

Tel.: +49 (0)7071 29-89137
mirjana.angelovskacin.uni-tuebingen.de